consider it as an option for earlier maturity and diversity from M-206, but watch for what is learned as it enters commercial production and how it will work for their location and situation.

Management Guidelines:
The following guidelines are based on research, observation and experience gained in developing M-105. These suggested cultural practices are intended to assist in the production of optimum yields and quality of M-105.

- Uniform water depth, adequate fertility, uniform seed distribution and good weed control practices are important because they maintain uniform heading and harvest moisture which in turn increase head rice milling yield.

- Fertilizer rates and other management practices should be similar to those for M-104 and M-206 in your production area.

- Preferred seeding dates are the same as for M-206 although it would be expected to perform better in later planting dates. M-105 should be seeded at the rate of 130 to 150 lbs/acre. Excessive seeding rates reduce yield potential and increase susceptibility to disease.

- Water depth should be increased to about 8 inches before panicle initiation (50 to 55 days after planting) to protect developing panicles from low temperature exposure during occasional cool nights.

- Although M-105 has given very high stable milling yields, as the harvest moisture falls below 18% head rice yield can decline rapidly.

Authors
F. Jodari, V. C. Andaya, C. W. Johnson (ret.), J. Lage (resigned) Plant Breeders, J. J. Oster, Plant Pathologist, K. S. McKenzie, Plant Breeder and Director, Rice Experiment Station, California Cooperative Rice Research Foundation, Inc., Biggs, CA.

J. E. Hill, Extension Agronomist, Department of Plant Sciences, UC Davis.

L. A. Espino, C. A. Greer, and R. G. Mutters are Farm Advisors, UC Cooperative Extension, Glenn/Colusa/Yolo, Sacramento/Placer/Sutter/Yuba, and Butte Counties, respectively.

R. L. Wennig, Staff Research Associate, Department of Plant Sciences, UC Davis.

Cover graphic art by Linda Seaman.

In accordance with applicable State and Federal laws and University policy, the University of California does not discriminate in any of its policies, procedures, or practices on the basis of race, religion, color, national origin, sex, marital status, sexual orientation, age, veteran status, medical condition, or handicap. Inquiries regarding this policy may be addressed to the Affirmative Action Director, University of California, Agriculture and Natural Resources, 300 Lakeside Drive, 6th Floor, Oakland, CA, 94612-3560. (510) 987-0097.
Introduction:
M-105 is a very early to early maturing, semi dwarf, smooth hulled, Calrose quality medium-grain cultivar. It was developed by the California Cooperative Rice Research Foundation, Inc. (CCRRF) at the Rice Experiment Station (RES), Biggs, CA and released to growers in April 2011. Protection and registration of M-105 is being sought under the US Plant Protection Act as well as registration under the US Plant Patent Act, and registration with the Crop Science Society of America.

Pedigree and Breeding:
M-105 is a very early selection with parentage from S-103, M-204, M-104 and closely related M-105 is a very early selection with parentage from S-103, M-204, M-104 and closely related M-205 and M-206, respectively. This trait is very cold San Joaquin county location. Yield potential would be M-206>M-105>M-104. In terms of resistance to cold temperature induced blanking, M-105 would be below the very tolerant M-104 but at least equal to M-206 based on greenhouse tests and cool temperature nursery observations.

Performance in Colder Areas:
As shown in Table 1 all three varieties have similar disease reaction with M-104 being slightly more sensitive. M-206 showed less sensitivity to Bakanae disease. Growers are still recommended to bleach treat seed for Bakanae. M-105 is susceptible to the race of blast disease found in California. Experience indicates the M-105 and M-104 are more susceptible to blast than M-206, however the field resistance of M-105 is not known.

Area of adaptation:
The performance data collected at RES and by UCCE indicates that M-105 has broad adaptation allowing it to be grown in all California rice producing areas. Its yield potential is below M-206 and M-205 except in cool temperature situations seen in cold growing seasons, late planting, and the cool production regions. It is not as early and resistant to cool temperature blanking as M-104 but has better milling yield potential and stability. As a new variety, growers should